Refinements of the Littlewood-Richardson Rule
نویسندگان
چکیده
In the prequel to this paper [5], we showed how results of Mason [11], [12] involving a new combinatorial formula for polynomials that are now known as Demazure atoms (characters of quotients of Demazure modules, called standard bases by Lascoux and Schützenberger [6]) could be used to define a new basis for the ring of quasisymmetric functions we call “Quasisymmetric Schur functions” (QS functions for short). In this paper we develop the combinatorics of these polynomials futher, by showing that the product of a Schur function and a Demazure atom has a positive expansion in terms of Demazure atoms. As a by-product, using the fact that both a QS function and a Demazure character have explicit expressions as a positive sum of atoms, we obtain the expansion of a product of a Schur function with a QS function (Demazure character) as a positive sum of QS functions (Demazure characters). Our formula for the coefficients in the expansion of a product of a Demazure character and a Schur function into Demazure characters is similar to known results [13] and includes in particular the famous Littlewood-Richardson rule for the expansion of a product of Schur functions in terms of the Schur basis. MSC: Primary 05E05; Secondary 05E10, 33D52 keywords: key polynomials, nonsymmetric Macdonald polynomials, Littlewood-Richardson rule, quasisymmetric functions, Schur functions, tableaux
منابع مشابه
Littlewood-Richardson fillings and their symmetries
Abstract Considering the classical definition of the Littlewood-Richardson rule and its 2-dimensional representation by means of rectangular tableaux, we exhibit 24 symmetries of this rule when considering dualization, conjugation and their composition. Extending the Littlewood-Richardson rule to sequences of nonnegative real numbers, six of these symmetries may be generalized. Our point is to ...
متن کاملSymmetric Skew Quasisymmetric Schur Functions
The classical Littlewood-Richardson rule is a rule for computing coefficients in many areas, and comes in many guises. In this paper we prove two Littlewood-Richardson rules for symmetric skew quasisymmetric Schur functions that are analogous to the famed version of the classical Littlewood-Richardson rule involving Yamanouchi words. Furthermore, both our rules contain this classical Littlewood...
متن کاملLittlewood-Richardson rules for symmetric skew quasisymmetric Schur functions
The classical Littlewood-Richardson rule is a rule for computing coefficients in many areas, and comes in many guises. In this paper we prove two Littlewood-Richardson rules for symmetric skew quasisymmetric Schur functions that are analogous to the famed version of the classical Littlewood-Richardson rule involving Yamanouchi words. Furthermore, both our rules contain this classical Littlewood...
متن کاملA Geometric Littlewood-richardson Rule
We describe an explicit geometric Littlewood-Richardson rule, interpreted as deforming the intersection of two Schubert varieties so that they break into Schubert varieties. There are no restrictions on the base field, and all multiplicities arising are 1; this is important for applications. This rule should be seen as a generalization of Pieri’s rule to arbitrary Schubert classes, by way of ex...
متن کاملEquivariant Littlewood-richardson Skew Tableaux
We give a positive equivariant Littlewood-Richardson rule also discovered independently by Molev. Our proof generalizes a proof by Stembridge of the ordinary Littlewood-Richardson rule. We describe a weight-preserving bijection between our indexing tableaux and the Knutson-Tao puzzles.
متن کامل